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Abstract--The multipole truncation technique developed previously by the authors for describing the 
hydrodynamic interaction of three-dimensional finite clusters of spherical particles at low Reynolds 
number is used to obtain solutions for the motion of freely suspended particles in planar shear and/or 
Poiseuille flow fields. Instantaneous configurations containing up to 13 particles are studied and 
quasi-steady trajectories are obtained for time-varying configurations of two or three particles. Interesting 
applications of the theory presented in this paper include the time-dependent motion of a chain of spheres 
with fixed interparticle spacings in shear flow which may serve as a model to study the deformation of 
a polymer chain and the motion of neutrally buoyant configurations in planar Poiseuille flow to study 
the lateral migration of particles. The motion of a neutrally buoyant sphere in the presence of a rigidly 
held sphere in shear flow is also examined. This study reveals a very intriguing behavior in which the free 
sphere rolls along the fixed sphere but an adverse pressure gradient forces a retrograde motion of its center. 

Key Words: particulate Stokes flow, two-phase flow, low Reynolds number hydrodynamics, hydrodynamic 
interaction of particles, multiple truncation technique 

1. I N T R O D U C T I O N  

Knowledge of  the hydrodynamic interaction for multiparticle configurations in shear or Poiseuille 
flow is essential in predicting the rheological behavior of  suspensions. Suspensions provide an 
economical way of transporting large quantities of  solid particulate material in industry such as 
pulp handling in paper manufacture and petroleum processing in fluidized beds. Self-diffusion of 
cells in blood is also of great importance. However, as yet, no exact multiparticle hydrodynamic 
interaction theory exists for shear and Poiseuille flows. 

Exact solutions for two spheres in a shear flow are available in the literature. Lin et al. (1970) 
obtained an exact solution of the Stokes equations for the motion of two spheres of  arbitrary size 
and arbitrary orientation with respect to a shear field by using spherical bipolar coordinates. Arp 
& Mason (1977) presented a general method of calculating forces, torques and translational and 
rotational velocity components of  a pair of  equally-sized rigid spheres in a viscous fluid undergoing 
uniform shear flow. The method is based on the matrix formulation of the hydrodynamic 
resistances by Brenner & O'Neill (1972). 

Far-field interactions for three or more spherical particles have been considered by Mazur & Van 
Saarloos (1982). These authors developed a general scheme for evaluating the mobility tensor for 
any three-dimensional configuration of spheres and derived explicit expressions up to order R-7, 
where R is the interparticle spacing. Their expressions are identical with those previously obtained 
by Kynch (1959) using the method of reflections. Applications of  the theory have been reported 
by Kamel & Tory (1989) for special planar configurations of  sedimenting spheres and by Ladd 
(1988) for periodic configurations. 

Durlofsky et al. (1987) developed a very efficient simulation technique, termed the multipole 
moment method, which permits the rapid evaluation of the force and torque on finite clusters of  
spherical particles. The method accounts for the many body interactions at large spacings in a 
manner equivalent to the method of reflections and lubrication forces at close spacings by 
considering pair interactions. The sphere mobility matrix is first formed by expanding the integral 
formulation for Stokes flow for a J sphere system in conjunction with Faxen's laws for the particle 
velocities in the moments of the force distribution on the surface of each particle. The mobility 
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matrix is inverted to yield a far-field approximation to the resistance matrix. Then lubrication is 
introduced in a pairwise additive manner using the exact two-body resistance functions calculated 
by Arp & Mason (1977). Owing to its low computational cost, the method can be used to simulate 
the time-dependent motion of large systems of particles. However, since only the first few terms 
in the series expansion for the velocity field are used, the method properly accounts for the 
multibody interactions when the particle spacing is large and the neglected terms are vanishingly 
small. Moreover, the method does not readily permit evaluation of the higher order terms, nor does 
it readily permit evaluation of the fluid velocity field. The method has been applied to study the 
resuspension of spheres in shear flow in a parallel-walled channel by Durlofsky & Brady (1989). 

Tran-Cong & Phan-Thien (1989) have applied the boundary integral technique to treat the 
hydrodynamic interaction of two spheroidal or three spherical particles at low Reynolds number. 
The boundary integral method is ideally suited for handling irregularly shaped or deformable 
bodies. However, for rigid spherical particles it appears advantageous both in terms of accuracy 
and computational effort to utilize a representation of the disturbance field in terms of a 
superposition of the fundamental singular solutions of the Stokes equations in spherical 
coordinates. 

Previously we developed (Hassonjee et  al. 1988) a method of solution, called the multipole 
truncation technique, for treating three-dimensional clusters of arbitrarily sized spherical particles 
and accounting for the multiparticle interactions at any given spacing. This study addressed the 
mobility problem for a multiparticle configuration settling freely under gravity and the resistance 
problem for clusters of particles fixed in space in a uniform flow field. It did not consider the 
mobility and resistance problems in shear or Poiseuille flow which is the topic of the present paper. 

The multipole truncation technique uses a linear superposition of Lamb's spherical harmonic 
solution of the creeping flow equations capable of describing an arbitrary disturbance on the 
surface of a sphere. The unknown constants in the series are determined by a procedure which 
involves satisfying the no-slip boundary conditions on the surface of each sphere simultaneously 
for all particles. This is accomplished by expressing the solutions in spherical coordinates in the 
form of a Fourier series and using the orthogonality property of the eigenfunctions in the azimuthal 
direction to satisfy the no-slip boundary conditions exactly at discrete rings on the surface of each 
sphere. The order of truncation of the Fourier series and the number of boundary collocation rings 
on each sphere determines the number of unknown constants introduced in the superposed series 
solutions. Using this method any desired degree of accuracy can be obtained by increasing the 
number of terms in the Fourier series and the number of collocation rings on each sphere. The 
ability of this method to reproduce exact bipolar solutions for two spheres settling freely under 
gravity was demonstrated in Hassonjee et al. (1988). It was also shown that the method can be 
used to obtain solutions of multiparticle configurations for as many as 64 spheres fixed in space 
in a uniform flow and can also easily be used to obtain the fluid velocity field around multiparticle 
configurations. 

The present paper presents a modification of the multipole truncation technique developed in 
Hassonjee et  al. (1988) for evaluating the hydrodynamic interactions of clusters of three- 
dimensional multiparticle configurations in planar shear and/or Poiseuille flow. Section 2 briefly 
summarizes the salient features of the theory for shear and Poiseuille flow. In section 3 the 
hydrodynamic interaction of multiparticle configurations in shear flow is examined. In section 4 
the lateral migration of particles in Poiseuille flow is considered. Section 5 deals with the 
time-dependent motion of three linked spheres having fixed interparticle spacings in shear flow. 
Finally, in section 6, solutions for the motion of a neutrally buoyant sphere in shear flow in the 
presence of a rigidly held sphere are presented which reveal an unusual behavior in the motion of 
the neutrally buoyant sphere. 

2. FORMULATION FOR SHEAR AND POISEUILLE FLOWS 

In this section, the theory developed in Hassonjee et al. (1988) for evaluating the hydrodynamic 
interaction of unrestricted three-dimensional multiparticle configurations in a uniform flow is 
modified to treat three-dimensional multiparticle configurations suspended freely in a planar shear 
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Figure 1. Geometry of system of J spheres suspended in a shear flow. 

and/or Poiseuille flow. The reader is referred to Hassonjee et al. (1988) for a detailed explanation 
of the method of solution, since only the key features and modifications of the theory are presented 
here. 

Figure 1 shows the geometry for a cluster of J spheres arranged in an arbitrary three-dimensional 
configuration in a viscous fluid. The j th  and kth spheres in the cluster are centered at the points 
(bj, cj, dj) and (bk, ck, ark), respectively, in a cartesian global coordinate system (x, y, z). The fluid 
velocity field in a stationary coordinate system whose origin lies at the center of the kth sphere 
consists of three parts: 

Vk  ~. Vk, s-Jr- Vk, p-31- Vk, d . [1] 

Here Vk,, and Vk, p describe planar shear and Poiseuille flow, respectively, which can be expressed 
in global cartesian coordinates as 

and 

Vk, ,=Szi  [2a] 

Vk. p = Vc [ 1 (z --21/fl_~ .~)21 i, [2b] 

where S is the rate of shear and Vc, fl and 1/are the parameters defining the parabolic shape of 
the Poiseuille flow. Using the coordinate transformations 

and 

i = sin Ok cos ~,~,k + cos Ok cos ~b,~0, - sin ~k~,, [3a] 

z = r~ cos  Ok + d~, [at,] 
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Vk,, and Vk, p are written in terms of spherical coordinates (rK, 0K, Sk) originating at the center of 
the kth sphere as 

Vk, s = S(r k COS O K + dk) sin Ok cos ~k~,~ 

+ S(rK cos OK + dK) COS O K COS ~K~Ok 

- S(rK cos Ok + dk) sin SKe,k [4a] 

and 

,r cosO;  
- sin 0K cos $, ~,~ 

- G[1  

(rk cos S~+ dK -- ~ )2 ] cos OK cos ¢,~Ok 

(rk COS 0~+ 4 -  ~/)2] sin ~K~**. Mb] 

Vk, d in [1] is the fluid velocity disturbance field produced by the J particles which can be 
represented by a superposition of Lamb's spherical harmonic solution for each particle and is given 
by 

Vk'd=j=l ~ nffil ~ IV X (FjZ_(n+I,.j)+V¢~ (n+l).j 
(n - 2) ~ (n + 1) ] 

#2n-(2n --- 1) rjVP_(n+t).j+ #n(2n - 1) rJP-I~+°'J ' [5] 

where Z, ~ and P are solid spherical harmonic functions given by 

[ ~--(n + l),j - 

~ - - (n  + O,J 

P - ( ~ +  O,J_ , ["] 1 = ~ P T ( ~ j ) r ~ ) | C j ~ | c o s m ~ j +  Dim sinmtbj . 
. -0  ILE~ j F ~  

[6] 

Here (rj, 0j, ~bj) are spherical coordinates whose origin coincides with the center of the j th  sphere, 
~j = cos 0j, pm is the associated Legendrc polynomial and A m, - Fj,, are unknown constants which 
are determined by satisfying the no-slip boundary conditions on the surface of each sphere. The 
solution procedure for determining these constants follows along the same lines as that described 
in Hassonjee et al. (1988) with the exception of the additional terms introduced by the free stream 
solution [4a,b]. The coordinates of the j th  sphere are first written in terms of a single spherical 
coordinate system whose origin lies at the center of the kth sphere. Sine, the associated Lcgendre 
function pm is zero for m > n, one can replace the summations X,%t Z~,.0 in [5] and [6] by 
Zm ~- 0 X~. m~n ,' 0) without any loss of terms and the term j = k is extracted from the outer summation 
in j. This manipulation reveals that the eigenfunctions in ~k constitute a complete Fourier series 
whose orthogonality properties can be used to satisfy the no-slip boundary conditions on any 
azimuthal ring, 0k = constant, on the surface of the kth sphere. The integrations involved in the 
inversion of this Fourier series are performed numerically with the exception of the terms in the 
free stream velocity which may easily be performed analytically. The final expressions are given 
in the appendix. 

For the resistance problem in which the 6J translational and angular velocity components are 
prescribed and one wishes to determine the forces and torques on each sphere, the two infinite series 
in n and m in [A.1]-[A.12] arc truncated after N and M terms, respectively, yielding 6JMN 
unknown constants. However, when m = 0 the coefficients of the constants Bj0~, Dj0, and Fj0, are 
identically zero for all three velocity components. Thus, one needs only 3JN(2M - 1) independent 
equations which are provided by [A.1]-[A.12]. 
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The hydrodynamic force and torque acting on the j th  particle may easily be obtained from 
expressions found in Happel & Brenner (1973, p. 67) and are given by 

and 

Fj  = - 4 n V ( r ~ P _ 2 )  = - 4 ~ [ E j , , i  + F j , , j  + Ejo, k ]  

T j  = - 87g/~V(r~x_2) = - 87~ t [A j l l i  -Jr- BjH j q -  A jo l k  ]. 

[7a] 

[7b] 

We now consider the mobility problem, in which the force and torque acting on each particle is 
prescribed, and we seek to determine the resulting translational and angular velocities. To illustrate, 
we examine the special case of a neutrally buoyant finite cluster of spheres suspended in an 
unbounded media. Equating the force and torque acting on each particle to zero yields: 

e , . .  = 8 , ,  = = 0 [8a] 

and 

Aj,~ = B j .  = Ajo~ = O. [8b] 

The 6J unknown particle translational and angular velocity components contained in [A. I]-[A. 12] 
are exactly equal in number to the 6J constants evaluated in [8a,b]. Therefore, the total number 
of unknowns remains the same. 

In Hassonjee et  aL (1988) the accuracy and convergence characteristics of the solution procedure 
were examined in detail. The ability of this technique to reproduce exact solutions for two spheres 
settling freely under gravity at different interparticle spacings and orientations was demonstrated. 
We have also been able to reproduce the exact solutions of Lin et  al. (1970) for the translational 
and angular velocities of two neutrally buoyant spheres in shear flow for center-to-center spacings 
> 1.1 particle diameters. Although the theory is valid at closer spacings, the series become slowly 
convergent making the procedure computationally prohibitive. Thus, in this paper we have 
restricted our attention to center-to-center spacings R / 2 a  I> 1.1, unless otherwise noted. Numerical 
tests show that convergence to within three or four significant figures can be achieved at a 
center-to-center spacing of 1.12 particle diameters using 8 rings on each sphere and retaining 6 
terms in the Fourier series. At a spacing of 1.54 diameters, only 6 rings on each sphere and 5 terms 
in the Fourier series were required to achieve the same accuracy. Tables containing the results of 
these convergence tests may be found in Hassonjee (1987). 

3. H Y D R O D Y N A M I C  INTERACTION OF SPHERES IN A SHEAR FLOW 

In this section we consider the hydrodynamic interaction of clusters of neutrally buoyant 
spheres in shear flow and demonstrate the importance of accounting for the interaction among all 
particles in the configuration. Failure of theories based on piecewise additivity assumptions are 
highlighted with some simple examples. It is worth pointing out that such failures may be 
anticipated on the basis of symmetry arguments that may be found in Brenner's (1964) work on 
the subject. 

Consider two identical unconstrained neutrally buoyant spheres at a center-to-center spacing of 
4 radii lying in the plane of shear (y = 0) at an angle of 30 ° with respect to the x-axis, as shown 
in figure 2(a). Both spheres have positive x- and z-velocity components and, from symmetry, the 
y-component of the velocity of both spheres is obviously zero. The velocity components of the 
sphere at the origin are shown in figure 2(a). Next consider two spheres in the plane z = 0 with 
the line joining the centers of the two spheres making an angle of 30 ° with respect to the x-axis, 
as shown in figure 2(b). The x- and y-velocity components of both spheres are zero and, in 
particular, the sphere at the origin has a positive z-velocity component as shown in the figure. Next 
we look at a three-sphere configuration where the first sphere is placed at the origin, the second 
sphere is in the plane of shear (y = 0) and the third sphere lies in the plane z = 0. The line joining 
the centers of spheres 2 and 1 and spheres 3 and 1 makes an angle of 30 ° with respect to the x-axis, 



358 Q. HASSObUEE et al. 

-¢ 

X 

j J x  o,s 
1o1 V ~ y  (bl ~ y 

. K "  2, 
x ~~_~'0557 "~ 0.0009 

~ y  
{e) 

Figure 2. (a) Two spheres in the plane y --- 0 with their line of  centers inclined at 30 ° with respect to the 
x-axis. (b) Two spheres in the plane z = 0 with their line of  centers oriented at 30 ° with respect to the 
x-axis. (c) Three-sphere configuration, where spheres 1 and 2 are in the plane y = 0 with their line of  
centers inclined at 30 ° with respect to the x-axis and spheres 1 and 3 are in the plane z -- 0 with their 
line of  centers oriented at 30 ° with respect to the x-axis. Center-to-center spacing between all spheres and 

the sphere at the origin is 4 radii. All velocities are nondimensionalized by a S .  

as shown in figure 2(c), and the center-to-center spacing between the sphere at the origin and the 
other two spheres is 4 radii. This configuration of three spheres is a combination of the earlier 
two-sphere configurations. Note that if the velocity components of the sphere at the origin for the 
configurations shown in figures 2(a) and 2(b) are simply added, the sum is remarkably close to the 
value of the velocity components of the sphere at the origin for the configuration shown in 
figure 2(c). However, this simple superposition fails to predict a nonzero y-translational velocity 
component of the sphere at the origin for the three-sphere configuration shown in figure 2(c) which 
the present solution shows has a value of 0.0009aS. This example shows that using paired 
interactions to describe multiple particle behavior can miss an effect which arises from the 
simultaneous three-body interactions. 

A similar behavior is also observed in a four-body interaction. When three unconstrained 
neutrally buoyant spheres are placed at the corners of a right triangle in the plane of shear, as shown 
in figure 3(a), all three spheres have nonzero x- and z-velocity components and, in particular, for 
a center-to-center spacing along the x- and z-axes of 4 particle radii, the sphere at the origin has 
the positive x- and z-velocity components shown. Next, for three spheres placed at the corners of 
a right triangle in the plane x -- 0, as shown in figure 3(b), all three spheres have only an x-velocity 
component. The velocity of the sphere at the origin for an interparticle spacing along the y- and 
z-axes of 4 radii is reported in the figure. Finally, for three spheres placed at the comers of a right 
triangle in the plane z = 0, as shown in figure 3(c), all three spheres have only a z-velocity 
component. The velocity of the sphere at the origin for a center-to-center spacing along the x- and 
y-axes of 4 radii is shown in the figure. Now for a four-sphere configuration, which is a combination 
of the previous three sphere configurations shown in figure 3(d), the sphere at the origin should 
not have a y-translational velocity component according to the three-body interactions. However, 
the present solution shows a nonvanishing y-velocity component for the sphere at the origin in this 
four-sphere configuration. At a center-to-center spacing of 4 radii between the sphere at the origin 
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Figure 3. (a) Three spheres in the plane y -- 0 at the vertices of a right triangle. (b) Three spheres in the 
plane x = 0 at the vertices of a right triangle. (c) Three spheres in the plane z = 0 at the vertices of a right 
triangle. (d) Four-sphere configuration, where sphere I is placed at the origin and spheres 2, 3 and 4 are 
placed on the axes. Center-to-center spacing between all spheres and the sphere at the origin is 4 radii. 

All velocities are nondimensionalized by aS. 

and the other spheres, the value of  this velocity component is -0 .000012aS. t  This example 
demonstrates the fact that even three-body interactions cannot always predict the behavior of  a 
four-sphere configuration and underscores the importance of  treating the multiparticle interactions 
simultaneously. 

In this section, all calculations were performed with N = 6 and M = 5. Convergence was checked 
by redoing the calculations with N = 8 and M = 6. The values of  the velocities reported in 
figures 2 and 3 are converged to the number of  digits shown. 

Leighton & Acrivos (1987) observed a shear-induced migration of  particles in concentrated 
suspensions. In a three-dimensional multiparticle suspension, spheres experience a self-diffusion 
perpendicular to the plane of  shear. While a rigorous theoretical demonstration of  the phenomenon 
would require three-dimensional time-dependent calculations showing a clear migration of  particles 
normal to the plane of  shear, the induced motion of  the sphere at the origin in the two examples 
considered above may be an indication of  this effect. 

4. M I G R A T I O N  OF N E U T R A L L Y  B U O Y A N T  S P H E R E S  IN A P L A N A R  
P A R A B O L I C  FLOW 

In this section we present a study of  the migration of  clusters of  neutrally buoyant spheres in 
a planar Poiseuille flow. Drift from regions of  high shear rate to low shear rate has been predicted 
theoretically for purely hydrodynamic interactions by Koch (1989) and for irreversible interactions 
in concentrated suspensions by Leighton & Acrivos (1987). 

Figure 4 shows a planar configuration of  13 identical neutrally buoyant spheres placed in a 
parabolic flow. Sphere 1 is located at the center of  two concentric regular hexagons. Spheres 2-13 
are located at the corners of  the two hexagons. This arrangement produces a planar triangular array 
with a center-to-center spacing of  1.68 (approx.) diameters between adjacent spheres. The 
concentration of  the triangular unit cell is 0.325 in the plane of  the sphere centers. All of  the spheres 
are free to translate and rotate. The free stream flow has a planar parabolic profile given by 

fThe very smaU magnitude of this value may raise a question as to its validity. Converience tests show that for N = 4 and 
M = 3 the value is -0.000017, for N -. 6 and M = 4 it is -0.0000121 and for N = 8 and M = 6 it is -0.0000121. Thus, 
the value appears to have converged to three significant fignres. 

M F  III/3,-,-D 
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Figure 4. Schematic of the multiparticle configuration of 13 neutrally buoyant spheres placed in a planar 
parabolic profile defined by the expression Vc[1 - ((z - ff)2//]2)]. Sphere 1 is at the center of two concentric 
hexagons. Spheres 2-7 are placed at the comers of the outer hexagon and spheres 8-13 are placed at the 
corners of the inner hexagon. The coordinates of the sphere centers are nondimensionalized by the 

sphere radius. 

where, as shown in figure 4, fl is the distance from the centerline where the free stream velocity 
vanishes and ~/ is the displacement of the centerline from the center of the multiparticle 
configuration. For all problems under consideration in this section, the centerline velocity was 
normalized to unity and fl was taken to be 20 sphere radii. We used N = 4 and M = 3 in all 
numerical calculations. 

Numerous runs were done with this instantaneous configuration of 13 spheres where the 
parameter r/was varied while keeping the parameter fl constant. Figure 5 shows the lateral drift 
velocity Wj (z-component of velocity) of the j th  particle as a function of t/. Owing to symmetry, 
spheres 1, 9 and 12 do not drift laterally. For )7 = 0, the center of the configuration coincides with 
the centerline of the two-dimensional Poiseuille profile and owing to symmetry, spheres 2 and 5 
also do not drift laterally. The remaining leading spheres tend to drift away from the plane of 
symmetry (z = 0) from a region of low shear to a region of high shear flow, while just the opposite 
is true for the trailing spheres. For t//> 6 (see figure 4) the entire configuration lies below the 
centerline of the Poiseuille profile. In this range of r/, figure 5 shows that all of the leading spheres 
drift from a region of low shear to high shear flow while all the trailing spheres drift from the high 
to low shear region. The drift of the overall system of particles from regions of high shear to low 
shear flow over a period of time is not immediately evident from examination of the particle 
velocities at one instant of time. 

Although possible in principle, the computation time which would be required to do a 13-sphere 
time-dependent simulation by the present method of solution is prohibitive. However, many of the 
features of the motion of neutrally buoyant particles in Poiseuille flow may be realized in a 
time-dependent simulation involving three particles. Such a run is shown in figure 6. In this figure, 
time t has been nondimensionalized by a/Vc. At t = 0, the spheres are placed at the corners of an 
equilateral triangle at a center-to-center spacing of 4 radii, with sphere 1 at a distance of 4 radii 
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Figure 5. Lateral drift velocity of the 13 particles in the configuration shown in figure 4. 

from the plane of zero shear which is denoted by the x-axis. The flow is directed to the right. At 
this instant in time the leading spheres are moving away from the plane of zero shear while the 
trailing sphere is moving towards it. This behavior is consistent with that previously observed for 
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Figure 6. Time-dependent run of three neutrally buoyant spheres originally in an equilateral triangular 
configuration in a planar parabolic flow, 
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the 13-sphere configuration. Subsequent frames are shown in a coordinate system which is 
translating to the right to follow the center of sphere 1. As expected, sphere 2 which is closest to 
the centerline travels the fastest, while sphere 3 which is furthest away travels the slowest. As 
sphere 3 swings by sphere 1, it causes sphere 1 to move slightly upward but then moves back down 
as sphere 3 moves away. The center of mass of the configuration in the lateral direction remains 
very nearly constant for all time. For the configuration considered, the spheres tend to align 
themselves in a straight line passing through the center of mass of the configuration parallel to the 
direction of flow. If a large number of randomly dispersed spheres were present, statistically there 
would be an equal number of particles on each side of the plane of zero shear and thus the center 
of mass of the configuration would have to coincide with the plane of zero shear. Therefore, over 
a period of time, as the particles drift laterally toward the center of mass of the configuration, they 
would appear to migrate from a region of high shear to a region of low shear flow. 

5. TIME-DEPENDENT MOTION OF A CHAIN OF SPHERES WITH FIXED 
INTERPARTICLE SPACINGS 

In polymer science it is very useful to know the deformation of a polymer chain in shear flow 
to determine the properties of a particular polymer. The application of this theory to practical 
problems is demonstrated by studying the deformation of a chain of three spheres with fixed 
interparticle spacings in shear flow. 

Consider three identical spheres placed in the plane of shear. The hydrodynamic interaction 
among the three particles can easily be determined by the theory presented in section 2. However, 
the theory must be modified to include the constraint of fixed interparticle spacings, which would 
be present if the spheres were somehow linked such as by thin rigid rods. The required modifications 
are outlined below. 

Figure 7 shows a schematic of three spheres in a plane. R12 and R23 are the fixed interparticle 
spacings between spheres 1 and 2 and spheres 2 and 3, respectively, and it is required that these 
spacings remain constant. Uj and Wj are the x- and z-velocity components of the j th  sphere, 
respectively. F12 and F23 are the tensile forces transmitted through the rods joining the centers of 
spheres 1 and 2 and spheres 2 and 3. We assume that the particles are free to rotate so the condition 
of zero torque on each sphere given by [8b] is still valid. However, the hydrodynamic force acting 
on each particle does not vanish due to the additional force exerted on that particle through the 
rods. Therefore, condition [8a] is no longer valid and this increases the number of unknowns by 
3J since Ejtl, Eye1 and Fj l  I a r e  no longer zero. For our particular case of three spheres in a plane, 
this introduces six additional unknowns corresponding to Ejlt and Ej01 for j = 1, 2, 3 as Fill is 
omitted in the planar case. Now an additional six equations are required in order to be able to 
solve for the unknowns. These are obtained as follows. 

In order that the interparticle spacing between spheres 1 and 2 be fixed we must first satisfy the 
kinematic condition that the translational velocity component of sphere 1 relative to sphere 2 
parallel to the line joining their centers must be zero. If the line joining the centers of spheres 1 
and 2 makes an angle 012 with respect to the x-axis, then 

(U1 - U2) cos 012 + (WI - I4'2) sin 012 = 0. [10] 

The kinematic condition for keeping the interparticle spacing between spheres 2 and 3 fixed 
requires 

( U  2 - -  U3)  c o s  023 -3 L ( W  2 - W3)  sin 023 = 0, [11] 

where 023 is the angle of inclination of the line joining spheres 2 and 3 with the x-axis. Equations 
[10] and [11] are the first two of the six equations needed for closure. 

Next, for quasi-steady motion, we must satisfy the dynamic condition that the sum of the 
hydrodynamic force and the force exerted by the rod(s) on each particle must be zero. This 
requirement gives rise to the following additional equations: 

Fxm - FI2 c o s  012 = 0 ,  [12] 

F~ t - Ft2 s in  012 ---- 0 ,  [13] 
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Figure 7. Schematic of a chain of three linked spheres in a plane. 

and 

Fx2 -~- El2 cos 012 - F23 cos 023 = 0, 

Fz2 +/ ' ,2  sin 012 - F23 sin 023 = 0, 

Fx3 + F23 cos 023 = 0 

[14] 

[15] 

[16] 

F~ 3 + F23 sin 023 = 0 ,  [17] 

where the hydrodynamic forces Fxj and F~j can be expressed in terms of  the coefficients Ejl, and 
Ej01 using [7a]. This set of  six equations [12]-[17] contains tWO additional unknowns, FI2 and F23, 
which can be eliminated to provide the four additional equations needed for closure. 

After making the necessary modifications to the general theory, convergence tests were 
performed for the case of  three spheres where the interparticle spacing between spheres 1 and 2 
and spheres 2 and 3 were 4 radii and 012 and 023 were 160 ° and 20 °, respectively (see figure 8 for 
t = 0). Table 1 shows the convergence tests for an increasing number of  collocation rings N and 
terms retained in the Fourier series M. The instantaneous x-velocity component of  sphere 2 is zero, 
the x-velocity components of  spheres 1 and 3 are equal in magnitude but opposite in sign and the 
z-velocity and rotational velocity components of  spheres 1 and 3 are equal in magnitude and sign. 
The results fo r  this configuration of  three linked spheres in a chain were found to converge 
somewhat faster than for the general case of  three freely moving spheres at the same spacing. 

Using a fifth-order Runge-Kut ta  procedure, time-dependent runs were performed for various 
initial configurations of  three spheres. Figure 8 shows the time-dependent motion of  one particular 
initial configuration. The three spheres were initially placed in a V-shaped configuration in the plane 
of  shear ( y  = 0). The center-to-center distance between spheres 1 and 2 and spheres 2 and 3 was 
maintained at 4 radii. Spheres 1 and 3 were placed symmetrically about the x-axis at an angle of  
20 ° between each of  the links and the x-axis. The time t in figure 8 is nondimensionalized by the 
shear rate S introduced in [2a]. Subsequent frames show that the configuration gradually opens 
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Figure 8. Time~lependent mot ion  o f  three linked spheres in shear flow. 
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Table 1. Velocities of three identical neutrally buoyant spheres of 
radius a connected by thin rods in a chain in shear flow at an 

orientation where 0m2 ffi 160 °, 023 = 20 ° and Ra~ = R~3 = 4a 

N M U, = " U  s W~= W 3 fly,--f~y, - W  2 fly 2 

2 2 0.41133 0.49959 0.92150 0.63053 0.94330 
2 3 0.41154 0.49989 0.92172 0.63082 0.94330 
2 4 0.41156 0.49990 0.92172 0.63086 0.94326 
2 5 0.41157 0.49990 0.92172 0.63086 0.94326 
2 6 0.41157 0.49990 0.92172 0.63086 0.94326 

4 2 0.42741 0.51759 0.89696 0.65672 0.94548 
4 3 0.42755 0.51786 0.89730 0.65683 0.94538 
4 4 0.42757 0.51788 0.89730 0.65685 0.94538 
4 5 0.42757 0.51788 0.89730 0.65685 0.94538 

6 2 0.42814 0.51866 0.89324 0.65764 0.94588 
6 3 0.42827 0.51892 0.89354 0.65775 0.94580 
6 4 0.42829 0.51894 0.89354 0.65777 0.94578 
6 5 0.42829 0.51894 0.89354 0.65777 0.94578 

8 2 0.42821 0.51873 0.89290 0.65777 0.94588 
8 3 0.42835 0.51900 0.89320 0.65788 0.94580 
8 4 0.42836 0.51901 0.89322 0.65790 0.94580 
8 5 0.42836 0.51901 0.89322 0.65790 0.94580 

N is the number of rings on each sphere, M is the number of 
eigenfunctions retained in the azimuthal direction. U, V, W and f~x, 
fly, ~: are the translational and angular velocity components 
nondimensionalized by aS and (1/2)S, respectively. 

up and at t -- 42.8 forms a straight line parallel to the direction of  flow. Continuation of  the run 
shows that at t = 85.5, a V-shaped configuration is again formed which, owing to the reversibility 
of  Stokes flow, is congruent to the configuration at t = 0. At t = 171 the spheres would return to 
their original positions (at t = 0) and the cycle would again be repeated. 

For  the run shown in figure 8 we used four boundary collocation rings and retained the first 
three terms of  the Fourier series. The maximum deviation in the velocity components  between the 
converged results and the results obtained using four rings and three terms of  the Fourier series 
was 0.2% (see table l) for the extreme case when spheres 1 and 3 were the closest (interparticle 
gap of  0.35 diameters). 

A similar procedure may be followed to treat more than three particles. The particles may be 
of  unequal size and other types of  constraints may be specified between the particles to obtain a 
more realistic representation of  a polymer chain. 

6. M O T I O N  OF A N E U T R A L L Y  B U O Y A N T  S P H E R E  IN T H E  P R E S E N C E  OF A 
F I X E D  S P H E R E  IN S H E A R  F L O W  

Consider the two spheres shown in figure 9 at a center-to-center spacing of  4 radii. The line 
joining the centers of  the two spheres is parallel to the direction of  flow and lies in the plane where 
the free stream velocity is zero. When both spheres are neutrally buoyant  [see figure 9(a)], the sphere 
on the left (i.e. sphere l) moves upward while the sphere on the right (i.e. sphere 2) moves 
downward with the same magnitude. Both spheres rotate clockwise and there is no net transfer 
of  fluid through the gap between the two spheres. Now suppose that sphere 1 is fixed (translational 
and rotational velocities prescribed as zero) while sphere 2 is still neutrally buoyant  [see figure 9(b)], 
then sphere 2 continues to rotate in a clockwise direction but translates upward! This is contrary 
to one's intuition since one would expect that as the free sphere rolls against the fixed sphere, its 
center should translate downward. 

To understand this unusual behavior we consider shear flow past a rigidly held sphere in the 
absence of  the free sphere. I f  the free sphere were sufficiently small its center would essentially 
follow the streamline of  the flow. The velocity field may readily be derived from Lamb ' s  spherical 
harmonic solution ([5]) and its cartesian components  are given by 

$2a3 [- X2 a 2 a2x  2-] 
u = S z  --~-Vr3 L1 + 5-~- + ~ 7 -  5 - - ~ - j , l  [18a] 
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(a) 

!!!'! 
(b) 

Figure 9. Fluid velocity field in the vicinity of two identical spheres at a center-to-center spacing of 4 radii 
in a simple shear flow. Translational and angular velocities are nondimensionalized by aS and (I/2)S, 
respectively. The forces and torques exerted by the fluid on the fixed sphere are nondimensionalized by 
6nlaa2S and 8nl~a2(1/2)aS, respectively. (a) Spheres I and 2 are neutrally buoyant and free to move. 

(b) Sphere I is fixed and sphere 2 is neutrally buoyant and free to move. 

and 

5Sxyza3 V 1 - -~ 
v = 2r3 L 

Sxa3 1 z2 a2 a2z2~ 

[18b] 

[18c] 

The corresponding pressure field is 

a 3 

P = P® - 5Sl~-~xz ,  [19] 

where the origin of  the cartesian coordinate system lies at the center of  the fixed sphere and the 
leading terms in [18a] and [19] represent-the far-field shear flow. The velocity field computed from 
[18a-c] in the plane y ffi 0 is shown in figure 10. We find that even though the net flow across the 
plane z -- 0 is zero as required by continuity, the local fluid velocity normal  to this plane does not 
vanish. This may easily be verified by substituting z - 0 in [18c], which shows that the fluid moves 
upward on the right of  the sphere and downward on its left. This vertically directed flow is induced 
by the pressure field (see [19]). As the fluid approaches the fixed sphere f rom the right it is obstructed 
by the fixed sphere, resulting in a rise in pressure on the right o f  the fixed sphere in the region z < 0. 
Similarly, as fluid is withdrawn from the right in the region z > 0, it creates a pressure drop. The 
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Figure 10. Fluid velocity field in the vicinity of a rigidly held sphere in simple shear flow. 

result is an induced flow from the high-pressure to the low-pressure regions shown in figure 10 or 
an upward velocity of the neutrally buoyant sphere shown in figure 9(b). 

Figure 11 shows the z-velocity component of the neutrally buoyant sphere W as a function of 
interparticle spacing. Actually, W is the total translational velocity of  the sphere since for z = 0, 
the x- and y-components are both zero. For large spacings W is positive as explained above. As 
the spheres are brought closer together, W reaches a maximum at a spacing R/a close to 3. The 
value of  W then drops to zero at R/a = 2.18 before becoming negative at closer spacings as the 
free sphere tends to roll along the fixed sphere. At the critical point in the plane z = 0 where W 
vanishes, the neutrally buoyant sphere is held captive by the fixed sphere, i.e. it rotates in a 
clockwise direction without translation. W must take a minimum value somewhere in the range 
2 <~ R/a <. 2.18 since we must have W = 0 as R/a-+2 (i.e. at contact). Unfortunately, we were 
unable to compute this minimum value because the computational cost became prohibitive at this 
close spacing. However, with runs taking N up to 12 and M up to 9, we were able to conclude 
that this minimum must occur in the range 2 ~< R/a <<. 2.02. 

Figure 12 shows the trajectories of a neutrally buoyant sphere of  unit radius in a shear flow in 
the presence of a fixed sphere of equal size centered at the origin. The dashed line surrounding the 
fixed sphere represents the positions of the center of the neutrally buoyant sphere when its surface 
touches the fixed sphere. The curved dashed line indicates the positions of  the sphere center where 
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Figure 11. Translational velocity of  the neutrally buoyant  sphere. 
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Figure 12. Trajectories of  a neutrally buoyant sphere in the presence of a rigidly held sphere in shear flow. 

the z-velocity component of the neutrally buoyant sphere vanishes, and thus represents the locus 
of minimum distance between the trajectories and the plane of symmetry z = 0. Also shown is the 
asymptotic value of this curve z = ___(1/2)x obtained by setting w = 0 in [18c]. For x = 10 and 
-0 .48 ~< z < 0, the neutrally buoyant sphere approaches the fixed sphere but is swept up and away 
before ever reaching it in a mirror image trajectory about the plane z = 0. For x = 10 and 
z < -0.48, the neutrally buoyant sphere will approach the fixed sphere and swing around beneath 
it in a mirror image trajectory about the plane x = 0. 

7. CONCLUDING REMARKS 

The multipole truncation technique developed by Hassonjee et  al. (1988) for treating the 
hydrodynamic interaction of arbitrary three-dimensional clusters of spherical particles has 
been applied to study the behavior of systems of particles in planar shear and Poiseuille flows. 
This method has the drawback of using large computer memory and computational time 
as mentioned previously (Hassonjee et  al. 1988). Nevertheless, we have been able to do 
transient problems involving three particles accurately using the CRAYII  and IBM 3090 
supercomputers. 

As demonstrated in the earlier sections, this is a powerful technique to study accurately the 
behavior of a finite number of particles in a viscous media. One may also easily and accurately 
determine the fluid behavior around a finite number of spheres, which should provide a better 
understanding of convective heat and mass transfer in suspensions. Although the method is time 
consuming when used for time-dependent problems involving more than three particles at close 
spacings, it serves to check the validity and accuracy of other faster but approximate methods, such 
as the multipole moment technique of Durlofsky et  al. (1987). One can also compromise with the 
desired accuracy and is thus able to increase the number of particles considered. During the course 
of this study we have seen the development and use of larger and faster computers, and with this 
kind of progress we may be able to use this method for transient problems involving more than 
three particles in the near future. At this time, this method can also be modified to solve bounded 
flow problems accurately where only a small number of particles are involved. 
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APPENDIX 

This appendix contains final expressions used to compute the unknown coefficients A: ,~-  F ~  
in [6] for J spheres in planar shear and/or Poiseuille flow. The results are: 

for the r-component of velocity, 

A;(0k) = Wk cos 0k-- ~-~ ~ [ A h , ~ A ~ + ' "  "+F~F:k~lddPk, [A.1] 
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- - - s i n  Ok 

1 E [A~A~m~ + + F~ .~ .~ ]  cos ~,~ de,,  [A.21 

BPl (Ok) = Vk sin Ok 1 .fo 2~ -- -~ ~ [Aj.,.A~k,,,. + " "  +Fm, F~,]  sin ~bk d~bk, [A.3] 

~ m" ,fA:..(0~)'(=_ , , fcos ,~l m" 
[Aj,.,.Ajkm. + ' "  + Fjm.Fjkm.] ~sin m'~bk~ d~k > l; [A.4] (S:.(0k)~ 

for the O-component of velocity, 

A g ( 0 k ) - - -  Wk sin 0k-- N ~.,[A:,~,A;, ,~+.. .+F~f;~]d*~, [A.51 

A ~' (0,) = ak (f/,)k -- C~ I -- (ak cos 0~ dk -- ~/) cos Ok -- S(ak cos Ok + dk) cos Ok 

1 ~o :~ t j~. yk,.. +''" + F~.F~.] cos 0k d~k. [A.6] + Ukcos 0 k - ~  ~rA A . . . .  

{A: ,(Ok)~ _ If: ~ :COS m:~bk~ d~k m'>I; [A.8] 
B~.(ODJ- - -~ E[A:"~A;~m"+"" + F:'~"F:~m"] (s in m ~kJ 

and 

for the ~-component of velocity, 

A~' (Ok)= ak(k~,)k sin Ok- 1 j[~X [A:,,~A;'m, + . . .  + Fj~.F;;.J d4pk. [A.9] 

A ~" (O k) = Vt - a t (f~x)k COS O k -- ~ E [A j,.. Aj;,~, +... + F~,, ]:~'~] cos ~b, dob~, [A. l 0] 

B~"(0k) = -- Vk -- ak(f~,)k COS Ok + S(ak COS Ok + d~) + ~t [1 (ak COS Okfl,+ dk-- ~/)2]- 

1 f2~ - - -  ~ [,4:,~, A~Z, + • ' • + F~m~ F~"Z.] sin ~k d~k, [A.11] 
7~ 0 

~A:'.(Ok)~ l [A~.A,~,~ + . . .  + F:,,,F':'~,,,~] [ s i n  m ' ~ b , ~  '~Wk > l ;  [ A . 1 2 ]  
la:;t0k)) ~ :o 

where X denotes vJ v® v~ , . ,  ," • -.:= ~<# ,, k) "-'m = 0 " ,  - ,, and the functions Ao , . .  Bin, on the left-hand side of 
[A.1]-[A.12] are given in appendix C of Hassonjee et al. 0988) with m repla~d by m'. The primed 
coefficients of  the unknown constants on the right-hand side of [A.1]-{A.12] arc given in appendix 
B of  this same reference. Copies of these appendices may bc obtained from the authors or the Editor 
on request, 


